CORRECTIONS Déclic Maths

Fonctions polynômes du second degré. Equations

Correction des exercices bilan page 37

- Bilan 1
 - 1) On a $f(x) = (m-1)x^2 2mx + m + 2$ f est un polynôme du second degré si et seulement si le coefficient du terme en x^2 est non nul; ici $m-1 \neq 0$ donc $D = \mathbb{R} \setminus \{1\}$
 - 2) (a) -1 est une racine $\Leftrightarrow f(-1) = 0$ $\Leftrightarrow m - 1 + 2m + m + 2 = 0$ $\Leftrightarrow 4m = -1$ $\Leftrightarrow m = \frac{-1}{4}$
 - (b) f admet une racine unique si et seulement si son discriminant est nul. ici $\Delta = b^2 - 4ac = 0 \Leftrightarrow (-2m)^2 - 4(m-1)(m+2) = 0$ $\Leftrightarrow 4m^2 - 4(m^2 + m - 2) = 0$ $\Leftrightarrow m = 2$
 - (c) f admet deux racines distinctes si et seulement si son discriminant est strictement positif.

ici
$$\Delta = b^2 - 4ac > 0 \Leftrightarrow (-2m)^2 - 4(m-1)(m+2) > 0$$

 $\Leftrightarrow -4(m-2) > 0$
 $\Leftrightarrow m-2 < 0$
 $\Leftrightarrow m < 2$

(d) f se factorise par x-2 si et seulement si 2 est une racine.

$$f(2) = 0 \Leftrightarrow 4(m-1) - 4m + m + 2 = 0$$
$$\Leftrightarrow 4m - 4 - 4m + m + 2 = 0$$
$$\Leftrightarrow m = 2$$

- (e) La somme des racines vaut $S = \frac{-b}{a} = \frac{2m}{m-1} = 6$ 2m = 6m-6 $m = \frac{3}{2}$
- (f) Le produit des racines vaut $P = \frac{c}{a} = \frac{m+2}{m-1} = -1$ m+2 = -m+1 $m = -\frac{1}{2}$

• Bilan 3

1) Après avoir calculer le discriminant, on trouve que -2 et $\frac{1}{2}$ sont les racines de f, donc $f(x) = 2(x+2)\left(x - \frac{1}{2}\right) = (x+2)(2x-1).$

Après avoir calculer le discriminant, on trouve que 4 et $\frac{1}{2}$ sont les racines de g, donc $g(x) = 2(x-4)\left(x - \frac{1}{2}\right) = (x-4)(2x-1).$

2)
$$\frac{1}{f(x)} + \frac{1}{g(x)} = \frac{1}{(x+2)(2x-1)} + \frac{1}{(x-4)(2x-1)} = \frac{1(x-4) + x(x+2)}{(x+2)(x-4)(2x-1)}$$
$$= \frac{x^2 + 3x - 4}{(x+2)(x-4)(2x-1)} = \frac{(x+4)(x-1)}{(x+2)(x-4)(2x-1)}$$
Donc l'équation
$$\frac{1}{f(x)} + \frac{1}{g(x)} = 0 \text{ admet deux solutions -4 et 1.}$$

• Bilan 5

1) En notant p le prix initial demandé aux élèves, on a : $x \times p = 168$ pour la première version et

(x-2)(p+0,40) = 168On a donc $p = \frac{168}{r}$ et $p = \frac{168}{r - 2} - 0.4$

2) Il s'agit de résoudre un système de deux équations à deux inconnues qui se ramène à une équation du second degré. On a alors : $0,4x^2-0,8x-336=0$ On trouve $\Delta = 538,24$ et les deux solutions sont -28 et 30. Seule la solution positive n'est envisageable. Il y a donc 30 élèves dans la classe.

• Bilan | 6

- a) On pose AM = x donc AN = 6 x. L'aire du triangle vaut ici $\frac{AM \times AN}{2}$ On cherche à résoudre $\frac{x(6-x)}{2} = 10$ soit $-x^2 + 6x - 20 = 0$ dont le discriminant est négatif. Il n'y a donc pas un tel triangle d'aire $10\ cm^2$
 - **b)** On cherche à résoudre $\frac{x(6-x)}{2} = 3$ soit $-x^2 + 6x 6 = 0$ dont le discriminant vaut 12. Les deux solutions sont $3-\sqrt{3}$ et $3+\sqrt{3}$ (les rôles de AM et AN s'échangent)
- **a)** $x \in [0; 6]$ 2)
 - b) D'après le théorème de Pythagore, on a $f(x) = x^2 + (6-x)^2 = 2x^2 12x + 36$
- a) On résout f(x) = 16 soit $2x^2 12x + 20 = 0$ dont le discriminant est négatif. Donc il n'y a pas de tel triangle AMN avec MN=4 cm.
 - b) On résout f(x) = 25 soit $2x^2 12x + 11 = 0$ dont le discriminant vaut 56. Il y a donc deux solutions $AM = \frac{6 - \sqrt{14}}{2}$ et $AN = \frac{6 + \sqrt{14}}{2}$ et la deuxième en échangeant les rôles de AM et AN.

- 4) a) $f(x) = 2x^2 12x + 36 = 2(x^2 6x) + 36 = 2(x 3)^2 18 + 36 = 2(x 3)^2 + 18$
 - **b)** $f(x) f(3) = f(x) 18 = 2(x 3)^2$ qui est toujours positif ou nul. Donc $f(x) \ge f(3)$
 - c) On a donc $MN^2 \ge 18$ comme un longueur est positive $MN \ge 3\sqrt{2}$. On a dans ce cas AM = AN = 3 et le triangle est isocèle rectangle en A.

• Bilan 8

- 1) Les coordonnées d'un point de la courbe représentative d'une fonction f sont de la forme (x; f(x)); ici A $(a; \frac{1}{a})$
- 2) Le point I est le milieu du segment [AB]. $x_I = \frac{x_A + x_B}{2} \text{ donc } x_B = 2x_I x_A = \frac{7}{2} a$ $y_I = \frac{y_A + y_B}{2} \text{ donc } y_B = 2y_I y_A = \frac{7}{3} \frac{1}{a}$ On a bien $B\left(\frac{7}{2} a; \frac{7}{3} \frac{1}{a}\right)$
- 3) Le point B appartient à la courbe $\mathscr C$ si et seulement si ses coordonnées vérifient $y_B = \frac{1}{x_B}$. D'après la question précédente : $\frac{1}{x_B} = \frac{1}{\frac{7-2a}{2}} = \frac{2}{7-2a}$

$$B \in \mathscr{C} \Leftrightarrow \frac{2}{7 - 2a} = \frac{7a - 3}{3a}$$
$$\Leftrightarrow 6a = (7 - 2a)(7a - 3)$$
$$\Leftrightarrow -14a^2 + 49a - 21 = 0$$
$$\Leftrightarrow 2a^2 - 7a + 3 = 0 = 0$$

4) On a $\Delta = 25$ donc deux solutions $a_1 = \frac{1}{2}$ et $a_2 = 3$.

Or ces deux abscisses sont telles que $\frac{\frac{1}{2}+3}{2} = \frac{7}{4} = x_I$.

Donc il existe deux points A et B appartenant à le courbe \mathscr{C} dont le milieu du segment [AB] est le point I.

Fonctions polynômes du second degré, parabole

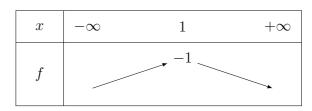
Correction des exercices bilan page 67

• Bilan 1

- 1) On considère une fonction f définie sur \mathbb{R} par $f(x) = -3x^2 + 6x 4$
 - a) Le discriminant du trinôme vaut $\Delta = 36 3 \times 4^2 = -12$. Il est négatif, donc le trinôme est toujours du signe de a, ici négatif. Ainsi, pour tout x, f(x) < 0.
 - b) Graphiquement, cela signifie que la courbe se situe en dessous de l'axe des abscisses.

2)
$$f(x) = -3(x^2 - 2x) - 4 = -3[(x - 1)^2 - 1] - 4 = -3(x - 1)^2 + 3 - 4 = -3(x - 1)^2 - 1$$

- 3) La forme canonique nous permet d'affirmer que l'axe de symétrie est la droite d'équation x = 1 et que le sommet a pour coordonnées (1; -1).
- 4) a)



- **b)** En étudiant le tableau de variations, on peut dire que : pour m < -1, l'équation f(x) = m admet deux solutions ; pour m = -1, l'équation f(x) = m admet une unique solution ; pour m > -1, l'équation f(x) = m n'admet pas de solution.
- 5) Déterminer les abscisses des points d'intersection de la courbe avec la droite d'équation y = -4 revient à résoudre l'équation f(x) = -4.

$$-3x^2 + 6x - 4 = -4$$

$$-3x^2 + 6x = 0$$

$$3x(-x+2) = 0$$

Cette équation produit admet deux solutions 0 et 2 qui sont les abscisses des points d'intersection. On peut vérifier que f(0) = -4 et f(2) = -4. Les points d'intersection sont donc (0; -4) et (2; 4).

6) Pour étudier la position relative de la courbe \mathscr{C} par rapport à la droite d'équation y = -4x + 3, on étudie le signe de f(x) - (-4x + 3).

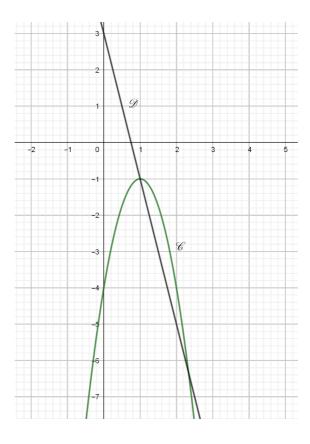
$$f(x) - (-4x + 3) = -3x^2 + 6x - 4 + 4x - 3 = -3x^2 + 10x - 7.$$

Les racines de ce trinôme sont 1 et $\frac{7}{3}$ et ce trinôme est du signe de a, ici négatif, à l'extérieur des racines.

Donc \mathscr{C} est au dessus de la droite sur]1; $\frac{7}{3}$ [et

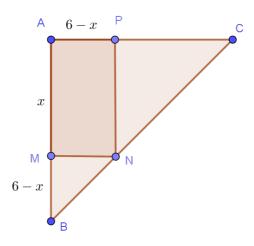
en dessous de la droite sur $]-\infty;1[\cup]\frac{7}{3};\infty[$

7)



• Bilan 3

1) On a la figure suivante:



- a) Le point M appartient au segment [AB], donc $x \in [0; 6]$
- b) Les triangles BMN et BAC ont deux angles égaux, donc ils sont semblables. Donc BMN est aussi isocèle rectangle, ainsi MB=MN=AP=6-x. Donc $A(x)=AM\times AP=x(6-x)=-x^2+6x$

2)
$$A(x) \ge 8 \Leftrightarrow -x^2 + 6x - 8 \ge 0$$

Les racines de ce trinôme sont 2 et 4.

Le trinôme est du signe de a, ici négatif à l'extérieur des racines.

Donc $A(x) \ge 8$ pour $x \in [2; 4]$

3)
$$A(x) \leqslant \frac{1}{4} \times \frac{AB \times AC}{2}$$

$$A(x) \leqslant \frac{1}{4} \times \frac{36}{2}$$

$$-x^2 + 6x - \frac{9}{2} \leqslant 0$$
Le discriminant de ce trinôme vaut 18.

Les racines de ce trinôme sont $\frac{-6-3\sqrt{2}}{-2}=3+3\frac{\sqrt{2}}{2}$ et $3-3\frac{\sqrt{2}}{2}$.

Le trinôme est du signe de a, ici négatif à <u>l</u>'extérieur des racines.

Donc
$$A(x) \le \frac{9}{2} \text{ pour } x \in \left[0; 3 - 3\frac{\sqrt{2}}{2}\right] \cup \left[3 + 3\frac{\sqrt{2}}{2}; 6\right]$$

4)
$$A(x) = -x^2 + 6x = -(x^2 - 6x) = -[(x - 3)^2 - 9] = -(x - 3)^2 + 9$$

Donc on a le tableau de variations suivant :

x	0	3	6
f		9	

5) Donc on lit que le maximum est atteint pour x=3. Dans ce cas M est au milieu de [AB] et AMNP est un carré.

• Bilan | 5

1) Les coordonnées du point M sont $(x; 4-x^2)$ et celles de N $(-x; 4-x^2)$. Ainsi le périmètre de MNPQ s'écrit : $p(x) = 2 \times 2x + 2 \times f(x) = 4x + 8 - 2x^2$

2)
$$p(x) = -2x^2 + 4x + 8 = -2(x^2 - 2x) + 8 = -2[(x - 1)^2 - 1] + 8 = -2(x - 1)^2 + 10$$

3) Donc le trinôme admet un maximum en 1 qui vaut 10. Lorsque l'abscisse du point M vaut 1 le périmètre du rectangle MNPQ est maximum et vaut 10.

• Bilan | 7

On considère la fonction f définie sur $]-1;+\infty[$ par $f(x)=\frac{x^2-x+1}{x+1}$

1) Etudions le signe de la fonction f.

$$x^2 - x + 1$$
 a pour discriminant -3,

donc ce trinôme n'admet pas de racine et est toujours du signe de a, ici positif.

De plus sur l'intervalle $]-1;+\infty[$, on a x+1>0.

Donc pour $x \in]-1;+\infty[$, on a : f(x)>0 et donc la courbe $\mathscr C$ est située au-dessus de l'axe des abscisses.

2)
$$f(x) \leqslant 1 \Leftrightarrow f(x) - 1 \leqslant 0$$

$$\Leftrightarrow \frac{x^2 - x + 1 - x - 1}{x + 1} \leqslant 0$$

$$\Leftrightarrow \frac{x^2 - 2x}{x + 1} \leqslant 0$$

$$\Leftrightarrow \frac{x(x - 2)}{x + 1} \leqslant 0$$

x	-1		0		2		$+\infty$
x		_	0	+		+	
x-2		_		_	0	+	
x+1	0	+		+		+	
$\frac{x(x-2)}{x+1}$		+	0	_	0	+	

Donc $\mathcal{S} = [0; 2]$

La courbe \mathscr{C} est en dessous de la droite d'équation y=1 pour x appartenant à l'intervalle [0;2].

3)
$$f(x)-(-x+3) = \frac{x^2-x+1-(-x+3)(x+1)}{x+1} = \frac{x^2-x+1+x^2-2x-3}{x+1} = \frac{(2x+1)(x-2)}{x+1}$$

La courbe $\mathscr C$ est en dessous de la droite Δ d'équation $y=-x+3$ si et seulement si $f(x)-(-x+3)<0$

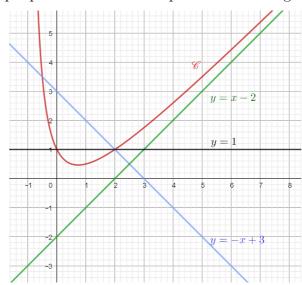
x	-1		$-\frac{1}{2}$		2		$+\infty$
2x+1		_	0	+		+	
x-2		_		_	0	+	
x + 1	0	+		+		+	
$\frac{(2x+1)(x-2)}{x+1}$		+	0	_	0	+	

Donc $\mathscr{S} =]-\frac{1}{2}; 2[.$

La courbe est en dessous de la droite Δ pour x appartenant à l'intervalle] $-\frac{1}{2}$; 2[.

4)
$$f(x) - (x-2) = \frac{x^2 - x + 1 - (x-2)(x+1)}{x+1} = \frac{3}{x+1}$$
 Cette fraction est toujours positive, donc la courbe est toujours au dessus de la droite \mathscr{D}

On peut vérifier graphiquement les résultats précédents sur le grapique ci-dessous :



Nombre dérivé – Applications

Correction des exercices bilan page 99

• Bilan 1

- 1) Si $h \neq 0$, le taux de variation de f entre 2 et 2 + h est est $\tau(h) = \frac{f(2+h) f(2)}{h}$.
- 2) Soit $h \neq 0$; on a $f(2+h) = 3(2+h)^2 (2+h) + 1$, soit $f(2+h) = 3(4+4h+h^2) - 2 - h + 1 = 3h^2 + 11h + 11$. D'autre part, $f(2) = 3 \times 2^2 - 2 + 1 = 11$, d'où $\tau(h) = \frac{3h^2 + 11h + 11 - 11}{h}$, soit $\tau(h) = \frac{h(3h+11)}{h} = 3h + 11$.
- 3) Lorsque h tend vers 0, $\tau(h)$ tend vers la limite finie $3 \times 0 + 11 = 11$, ce que l'on peut noter $\lim_{h\to 0} \frac{f(2+h)-f(2)}{h} = 11$; cela prouve que f est dérivable en 2 et que le nombre dérivé de f en 2 est f'(2) = 11.

• Bilan 2

- 1) a) f(x) est l'ordonnée du point de \mathscr{C}_f d'abscisse x, donc : f(-2) = -1 ; f(-1) = 0 et f(1) = -1.
 - b) f'(a) est la pente de la tangente à \mathscr{C}_f au point d'abscisse a, donc : f'(-2) = 0 ; $f(-1) = \frac{3}{2}$ et f'(1) = -4.
- **2)** $\mathscr{T}_1: y = -1$; $\mathscr{T}_2: y = \frac{3}{2}x + \frac{3}{2}$ et $\mathscr{T}_3: y = -4x + 3$.

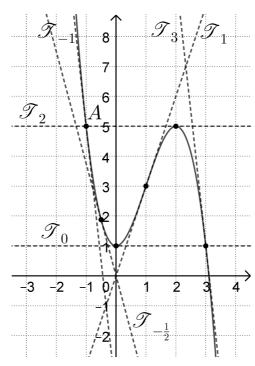
• Bilan 3

- 1) a) Faux. Pour tout réel a, f'(a) = -2.
 - b) Vrai.
 - c) Vrai. Notons que, comme f est affine, sa représentation graphique est une droite d. La tangente à \mathcal{C}_f au point d'abscisse a a pour équation y = f'(a)(x-a) + f(a), soit y = -2(x-a) 2a + 5, ce qui équivaut à y = -2x + 5. On vient de prouver une quasi-évidence : la tangente à la droite d en un point quelconque est la droite d elle-même!
- **2**) **a**) Vrai.
 - b) Faux. Le coefficient directeur de la tangente à \mathscr{C}_g au point d'abscisse -1 est $g'(-1) = 2 \times (-1)^2 = 3$, donc $g'(-1) \neq -3$.
 - c) Vrai. La tangente à \mathscr{C}_g au point d'abscisse 2 a pour équation y = g'(2)(x-2) + g(2), soit $y = 3 \times 2^2(x-2) + 8$, ce qui équivaut bien à y = 12x 16.
- 3) Rappelons que $h: x \mapsto \frac{1}{x}$ est dérivable sur \mathbb{R}^* de dérivée $h': x \mapsto -\frac{1}{x^2}$.
 - a) Vrai. La tangente à \mathcal{C}_h au point d'abscisse a [resp. -a] a pour pente $f'(a) = -\frac{1}{a^2}$ [resp. $-\frac{1}{(-a)^2} = -\frac{1}{a^2}$]. Les tangentes ayant la même pente $\left(=-\frac{1}{a^2}\right)$, elles sont bien parallèles.

- **b)** Vrai. $h'(2) = -\frac{1}{2^2} = -\frac{1}{4}$.
- c) Vrai. La tangente \mathscr{T} à \mathscr{C}_h au point d'abscisse -1 a pour équation réduite y = h'(-1)(x-(-1)) + h(-1). Or $h(-1) = \frac{1}{-1} = -1$ et $h'(-1) = -\frac{1}{(-1)^2} = -1$, donc \mathscr{T} a pour équation y = -(x+1) 1, soit y = -x 2.

• Bilan 4

Si $a \in \mathbb{R}$, on note \mathcal{T}_a la tangente à \mathscr{C}_f au point d'abscisse a.



1) \mathscr{T}_a est parallèle à l'axe (Ox) si et seulement si la pente de \mathscr{T}_a est nulle, ce qui équivaut à f'(a) = 0.

Or $f'(a) = 0 \iff -3a^2 + 6a = 0 \iff 3a(-a+2) = 0 \iff (a = 0 \text{ ou } a = 2).$

Les tangentes à \mathscr{C}_f parallèles à l'axe (Ox) sont donc \mathscr{T}_0 et \mathscr{T}_2 .

- 2) a) \mathcal{T}_{-1} a pour équation y = f'(-1)(x (-1)) + f(-1). Or $f(-1) = -(-1)^3 + 3 \times (-1)^2 + 1 = 5$ et $f'(-1) = -3 \times (-1)^2 + 6 \times (-1) = -9$, donc \mathcal{T}_{-1} a pour équation y = -9(x + 1) + 5, soit y = -9x - 4.
 - b) $\mathcal{T}_a/\!/\mathcal{T}_{-1} \iff$ les pentes de \mathcal{T}_a et \mathcal{T}_{-1} sont égales \iff f'(a) = f'(-1), ce qui équivaut à $-3a^2 + 6a = -9$, puis à $a^2 2a 3 = 0$. Il s'agit d'une équation du second degré d'inconnue a dont les solutions sont $a_1 = -1$ et $a_2 = 3$ (détails des justifications laissés au lecteur). Ainsi les tangentes à \mathcal{C}_f parallèles à \mathcal{T}_{-1} sont \mathcal{T}_{-1} elle-même et \mathcal{T}_3 .

 \mathcal{T}_3 a pour équation y = f'(3)(x-3) + f(3), soit y = -9(x-3) + 1, ce qui équivaut à y = -9x + 28.

- 3) a) \mathcal{T}_a a pour équation y = f'(a)(x-a) + f(a), soit $y = (-3a^2 + 6a)(x-a) a^3 + 3a^2 + 1$, ce qui équivaut à $y = (-3a^2 + 6a)x + 3a^3 6a^2 a^3 + 3a^2 + 1$, et finalement \mathcal{T}_a a bien pour équation $y = (-3a^2 + 6a)x + 2a^3 3a^2 + 1$.
 - b) \mathscr{T}_a passe par l'origine si et seulement si son ordonnée à l'origine est nulle, ce qui équivaut (voir question précédente) à $2a^3 3a^2 + 1 = 0$ (**). Or $(a-1)^2(2a+1) = (a^2-2a+1)(2a+1) = 2a^3+a^2-4a^2-2a+2a+1 = 2a^3-3a^2+1$, donc (**) \iff $(a-1)^2(2a+1) = 0$.
 - c) On a $(\star) \iff (a-1=0 \text{ ou } 2a+1=0) \iff (a=1 \text{ ou } a=-\frac{1}{2}) \text{ donc les }$ tangentes à \mathscr{C}_f passant par l'origine du repère sont \mathscr{T}_1 et $\mathscr{T}_{-\frac{1}{2}}$.

On a
$$f'(1) = -3 \times 1^2 + 6 \times 1 = 3$$
 et $f'\left(-\frac{1}{2}\right) = -3 \times \left(-\frac{1}{2}\right)^2 + 6 \times \left(-\frac{1}{2}\right) = -\frac{15}{4}$, d'où $\mathscr{T}_1: y = 3x$ et $\mathscr{T}_{-\frac{1}{2}}: y = -\frac{15}{4}x$.